Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice
Loss-of-function mutations in the gene ( CSTB ) encoding human cystatin B, a widely expressed cysteine protease inhibitor, are responsible for a severe neurological disorder known as Unverricht-Lundborg disease (EPM1). The primary cellular events and mechanisms underlying the disease are unknown. We...
Gespeichert in:
Veröffentlicht in: | Nature genetics 1998-11, Vol.20 (3), p.251-258 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Loss-of-function mutations in the gene (
CSTB
) encoding human cystatin B, a widely expressed cysteine protease inhibitor, are responsible for a severe neurological disorder known as Unverricht-Lundborg disease (EPM1). The primary cellular events and mechanisms underlying the disease are unknown. We found that mice lacking cystatin B develop myoclonic seizures and ataxia, similar to symptoms seen in the human disease. The principal cytopathology appears to be a loss of cerebellar granule cells, which frequently display condensed nuclei, fragmented DNA and other cellular changes characteristic of apoptosis. This mouse model of EPM1 provides evidence that cystatin B, a non-caspase cysteine protease inhibitor, has a role in preventing cerebellar apoptosis. |
---|---|
ISSN: | 1061-4036 1546-1718 |
DOI: | 10.1038/3059 |