Hypoxia/Hypoxemia-Induced Activation of the Procoagulant Pathways and the Pathogenesis of Ischemia-Associated Thrombosis

Although oxygen deprivation has long been associated with triggering of the procoagulant pathway and venous thrombosis, blood hypoxemia and stasis by themselves do not lead to fibrin formation. A pathway is outlined through which diminished levels of oxygen activate the transcription factor early gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 1999-09, Vol.19 (9), p.2029-2035
Hauptverfasser: Yan, Shi-Fang, Mackman, Nigel, Kisiel, Walter, Stern, David M, Pinsky, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although oxygen deprivation has long been associated with triggering of the procoagulant pathway and venous thrombosis, blood hypoxemia and stasis by themselves do not lead to fibrin formation. A pathway is outlined through which diminished levels of oxygen activate the transcription factor early growth response-1 (Egr-1) leading to de novo transcription/translation of tissue factor in mononuclear phagocytes and smooth muscle cells, which eventuates in vascular fibrin deposition. The procoagulant response is magnified by concomitant suppression of fibrinolysis by hypoxia-mediated upregulation of plasminogen activator inhibitor-1. These data add a new facet to the biology of thrombosis associated with hypoxemia/stasis and imply that interference with mechanisms causing Egr-1 activation in response to oxygen deprivation might prevent vascular fibrin deposition occurring in ischemia without directly interfering with other pro/anticoagulant pathways.
ISSN:1079-5642
1524-4636
DOI:10.1161/01.atv.19.9.2029