Quenching of chlorophyll fluorescence by quinones
Quinones caused quenching of Chl a fluorescence in native and model systems. Menadione quenched twofold the fluorescence of Chl a and BChl a in pea chloroplasts, chromatophores of purple bacteria, and liposomes at concentrations of 50‐80 μM. To obtain twofold quenching in Triton X‐100 micelles and i...
Gespeichert in:
Veröffentlicht in: | Biochemistry and molecular biology international 1998-10, Vol.46 (2), p.333-341 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quinones caused quenching of Chl a fluorescence in native and model systems. Menadione quenched twofold the fluorescence of Chl a and BChl a in pea chloroplasts, chromatophores of purple bacteria, and liposomes at concentrations of 50‐80 μM. To obtain twofold quenching in Triton X‐100 micelles and in ethanol, the addition of 1.3 mM and 11 mM menadione was required, respectively. A proportional decrease in the lifetime and yield of Chl a fluorescence in chloroplasts, observed as the menadione concentration increased, is indicative of the efficient excitation energy transfer from bulk Chl to menadione. The decrease in the lifetime and yield of fluorescence was close to proportional in liposomes, but not in detergent micelles. The insensitivity of the menadione quenching effect to DCMU in chloroplasts, and similarity of its action in chloroplasts and liposomes indicate that menadione in chloroplasts interacts with antenna Chl, i. e., nonphotochemical quenching of fluorescence occurs. |
---|---|
ISSN: | 1521-6543 1039-9712 1521-6551 |
DOI: | 10.1080/15216549800203842 |