A Molecular Basis for How a Single TCR Interfaces Multiple Ligands
CD8+ T cells respond to Ags when their clonotypic receptor, the TCR, recognizes nonself peptides displayed by MHC class I molecules. The TCR/ligand interactions are degenerate because, in its life time, the TCR interacts with self MHC class I-self peptide complexes during ontogeny and with self clas...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1998-11, Vol.161 (9), p.4719-4727 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CD8+ T cells respond to Ags when their clonotypic receptor, the TCR, recognizes nonself peptides displayed by MHC class I molecules. The TCR/ligand interactions are degenerate because, in its life time, the TCR interacts with self MHC class I-self peptide complexes during ontogeny and with self class I complexed with nonself peptides to initiate Ag-specific responses. Additionally, the same TCR has the potential to interact with nonself class I complexed with nonself peptides. How a single TCR interfaces multiple ligands remains unclear. Combinatorial synthetic peptide libraries provide a powerful tool to elucidate the rules that dictate how a single TCR engages multiple ligands. Such libraries were used to probe the requirements for TCR recognition by cloned CD8+ T cells directed against Ags presented by H-2Kb class I molecules. When H-2Kb contact residues were examined, position 3 of the peptides proved more critical than the dominant carboxyl-terminal anchor residue. Thus, secondary anchor residues can play a dominant role in determining the antigenicity of the epitope presented by class I molecules. When the four solvent-exposed potential TCR contact residues were examined, only one or two of these positions required structurally similar residues. Considerable structural variability was tolerated at the remaining two or three solvent-exposed residues of the Kb-binding peptides. The TCR, therefore, requires close physico-chemical complementarity with only a few amino acid residues, thus explaining why TCR/MHC interactions are of low affinity and degenerate. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.161.9.4719 |