In vivo effects of pioglitazone on uncoupling protein-2 and -3 mRNA levels in skeletal muscle of hyperglycemic KK mice

Pioglitazone is a thiazolidinedione drug (TZD) which potently and specifically stimulates peroxisome proliferator-activated receptor gamma (PPAR gamma) and sensitizes cells to insulin. Since TZDs are thought to increase energy expenditure, changes in mitochondrial thermogenesis uncoupling protein-2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 1998-10, Vol.251 (1), p.374-378
Hauptverfasser: Shimokawa, T, Kato, M, Watanabe, Y, Hirayama, R, Kurosaki, E, Shikama, H, Hashimoto, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pioglitazone is a thiazolidinedione drug (TZD) which potently and specifically stimulates peroxisome proliferator-activated receptor gamma (PPAR gamma) and sensitizes cells to insulin. Since TZDs are thought to increase energy expenditure, changes in mitochondrial thermogenesis uncoupling protein-2 and -3 mRNA levels in response to pioglitazone treatment were measured in mouse skeletal muscle. Normally hyperglycemic and hyperinsulinemic KK/Ta mice were given pioglitazone for 2 weeks to treat this non-insulin dependent diabetes-like condition. During treatment, UCP2 mRNA levels increased to 185% of normal untreated control levels in soleus muscle. In contrast, UCP3 mRNA levels significantly decreased, up to 67% of normal untreated control levels. Interestingly, UCP3 mRNA levels correlated quite strongly with blood glucose levels, with r = 0.82 for gastrocnemius tissue and r = 0.92 for soleus tissue. These results may indicate that pioglitazone increases glucose catabolism by direct upregulation of muscle UCP2 gene expression in vivo. Therefore, UCP3 gene expression is controlled by a different mechanism than UCP2 expression.
ISSN:0006-291X
DOI:10.1006/bbrc.1998.9479