Isolation and partial characterization of an opioid-like 88 kDa hibernation-related protein
Previous studies show that infusion of hibernating woodchuck albumin (HWA) induces hibernation in summer-active ground squirrels and results in profound behavioral and physiological depression in primates. These effects are reversed by the administration of opiate antagonists, suggesting that the pu...
Gespeichert in:
Veröffentlicht in: | Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 1998-04, Vol.119 (4), p.787-805 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies show that infusion of hibernating woodchuck albumin (HWA) induces hibernation in summer-active ground squirrels and results in profound behavioral and physiological depression in primates. These effects are reversed by the administration of opiate antagonists, suggesting that the putative hibernation induction trigger (HIT) may act through opioid receptors. We have demonstrated that both HIT-containing plasma and the synthetic
α opioid
d-Ala
2-
d-Leu
5-enkephalin (DADLE), which mimics the activity of HIT in hibernators, extend tissue survival time of a multi-organ autoperfusion system by 3-fold. In this study we present the first data showing biological activity with a much more highly purified plasma fraction from hibernating woodchucks, identified as the hibernation-related factor (HRF). Both the HRF and DADLE show opiate-like contractile inhibition in the mouse vas deferens (Mvd) bioassay. We also have preliminary evidence in an isolated rabbit heart preparation indicating that the HRF and DADLE act similarly to restore left ventricular function following global myocardial ischemia. Furthermore, we have partially sequenced an α 1-glycoprotein-like 88 kDa hibernation-related protein (p88 HRP) present in this fraction, which may prove to be the blood-borne HIT molecule. |
---|---|
ISSN: | 1096-4959 1879-1107 |
DOI: | 10.1016/S0305-0491(98)00056-X |