Muscarinic-cholinoceptor mediated attenuation of phospholamban phosphorylation induced by inhibition of phosphodiesterase in ventricular cardiomyocytes: evidence against a cAMP-dependent effect
In intact guinea pig ventricles, acetylcholine (ACH) has been shown to attenuate the positive inotropic effects of isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor, by reducing protein phosphorylation without altering cAMP levels. In the present study, we tested the hypothesis that the c...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 1998-10, Vol.187 (1-2), p.155-161 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In intact guinea pig ventricles, acetylcholine (ACH) has been shown to attenuate the positive inotropic effects of isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor, by reducing protein phosphorylation without altering cAMP levels. In the present study, we tested the hypothesis that the cAMP-independent inhibitory action of ACH is also evident in isolated cardiomyocytes. cAMP-dependent protein kinase (PKA) activity ratio (-cAMP/+cAMP) and phosphorylation of phospholamban (PLB) were determined in unlabeled and 32P-labeled guinea pig ventricular cardiomyocytes, respectively. IBMX increased PKA activity ratio and phosphorylation of PLB in a dose-dependent manner. When cardiomyocytes were incubated simultaneously with IBMX (0-1 mM) and ACH (2 microM), ACH attenuated PLB phosphorylation stimulated by low concentration (1O-100 microM) but not by high concentrations (> 200 microM) of IBMX. EC50 value for IBMX-induced phosphorylation of PLB was 32 +/- 6 microM and increased nearly 3-fold after addition of ACH while PKA activity ratio remained unchanged. The rank order of cyclic nucleotide derivatives to phosphorylate PLB was 8 bromo-cAMP > dibutyryl cAMP > 8 bromo-cGMP > dibutyryl cGMP. ACH reduced phosphorylation of PLB stimulated by 8 bromo-cAMP. We conclude that in isolated cardiomyocytes (1) ACH inhibits phosphorylation of PLB stimulated by either IBMX or 8 bromo-cAMP and (2) ACH does not lower IBMX-stimulated PKA activity ratio. These effects of ACH on PLB phosphorylation cannot be explained by a reduction in IBMX-stimulated cAMP levels but may involve the activation of protein phosphatases. |
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1023/A:1006899931151 |