Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle

The role of the xanthophyll cycle in the adaptation of two chlorococcal algae Scenedesmus quadricauda and Chlorella sorokiniana to high irradiance was studied under laboratory and outdoor conditions. We wished to elucidate whether the xanthophyll cycle plays a key role in dissipating the excesses of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 1999-07, Vol.209 (1), p.126-135
Hauptverfasser: Masojidek, J, Torzillo, G, Koblizek, M, Kopecky, J, Bernardini, P, Sacchi, A, Komenda, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of the xanthophyll cycle in the adaptation of two chlorococcal algae Scenedesmus quadricauda and Chlorella sorokiniana to high irradiance was studied under laboratory and outdoor conditions. We wished to elucidate whether the xanthophyll cycle plays a key role in dissipating the excesses of absorbed light, as in higher plants, and to characterise the relationship between chlorophyll fluorescence parameters and the content of xanthophyll-cycle pigments. The xanthophyll cycle was found to be operative in both species; however, its contribution to overall non-photo-chemical quenching (NPQ) could only be distinguished in Scenedesmus (15-20% of total NPQ). The Scenedesmus cultures showed a larger pool of xanthophyll-cycle pigments than Chlorella, and lower sensitivity to photoinhibition as judged from the reduction of maximum quantum yield of photosystem II. In general, both algae had a larger xanthophyll-cycle pool when grown outdoors than in laboratory cultures. Comparing the two Species, Scenedesmus exhibited a higher capacity to adapt to high irradiance, due to an effective quenching mechanism and high photosynthetic capacity; in contrast, Chlorella represents a species with a larger antennae system, less-efficient quenching and lower photosynthetic performance. Non-photochemical quenching (NPQ) induced through the xanthophyll cycle can, to a limited extent, represent a regulatory factor in diluted algal cultures grown in outdoor solar photobioreactors, as well as in natural algal phytoplankton populations exposed transiently to high irradiance. However, it does not play an appreciable role in dense, well-mixed microalgal suspensions.
ISSN:0032-0935
1432-2048
DOI:10.1007/s004250050614