[Arg8]-Vasopressin-induced increase in intracellular Ca2+concentration in cultured rat hippocampal neurons

Changes in intracellular Ca2+ concentration ([Ca2+]i) induced by [Arg8]-vasopressin (AVP) were studied in cultured rat hippocampal neurons by fura-2 fluorometry. AVP (10-1,000 nM) caused a dose-dependent increase in [Ca2+]i. The selective V1 vasopressin receptor agonist [Phe2, Ile3, Orn8]-vasopressi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research bulletin 1999-07, Vol.49 (5), p.343-347
Hauptverfasser: MIHARA, T, TARUMI, T, SUGIMOTO, Y, ZHONG CHEN, KAMEI, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Changes in intracellular Ca2+ concentration ([Ca2+]i) induced by [Arg8]-vasopressin (AVP) were studied in cultured rat hippocampal neurons by fura-2 fluorometry. AVP (10-1,000 nM) caused a dose-dependent increase in [Ca2+]i. The selective V1 vasopressin receptor agonist [Phe2, Ile3, Orn8]-vasopressin also induced a significant increase in [Ca2+]i, whereas the selective V2 vasopressin receptor agonist [deamino Cys1, D-Arg8]-vasopressin showed no effect. The AVP-induced increase in [Ca2+]i was inhibited by the selective V1 vasopressin receptor antagonist d(CH2)5[Tyr2(Me), Arg8]-vasopressin and nonpeptide V1 antagonist OPC-21268. On the other hand, no antagonistic effects were observed with the V2 vasopressin antagonist desglycinamide-[d(CH2)5, D-Ile2, Ile4, Arg8]-vasopressin and nonpeptide V2 antagonist OPC-31260. The increase in [Ca2+]i induced by AVP was abolished after removal of extracellular Ca2+. In addition, AVP-induced [Ca2+]i elevation was not affected by treatment with verapamil, which blocked the [Ca2+]i increase induced by an isotonic high K(+)-medium (50 mM). However, omega-conotoxin GVIA completely inhibited the effect of AVP. These results suggested that the AVP-induced [Ca2+]i increase in cultured rat hippocampal neurons is due to influx of Ca2+ through V1 VP receptors coupled with N-type calcium channels.
ISSN:0361-9230
1873-2747
DOI:10.1016/s0361-9230(99)00064-7