pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain

Pipsqueak (Psq) belongs to a family of proteins defined by a phylogenetically old protein-protein interaction motif. Like the GAGA factor and other members of this family, Psq is an important developmental regulator in Drosophila, having pleiotropic functions during oogenesis, embryonic pattern form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-10, Vol.273 (43), p.28504-28509
Hauptverfasser: Lehmann, M, Siegmund, T, Lintermann, K.G, Korge, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pipsqueak (Psq) belongs to a family of proteins defined by a phylogenetically old protein-protein interaction motif. Like the GAGA factor and other members of this family, Psq is an important developmental regulator in Drosophila, having pleiotropic functions during oogenesis, embryonic pattern formation, and adult development. The GAGA factor controls the transcriptional activation of homeotic genes and other genes by binding to control elements containing the GAGAG consensus motif. Binding is associated with formation of an open chromatin structure that makes the control regions accessible to transcriptional activators. We show here that Psq contains a novel DNA-binding domain, which binds, like the GAGA factor zinc finger DNA-binding domain, to target sites containing the GAGAG consensus motif. Binding is suppressed, as in the GAGA factor and other proteins of the family, by the associated protein-protein interaction motif. The DNA-binding domain, which we call the Psq domain, is identical with a previously identified region consisting of four tandem repeats of a conserved 50-amino acid sequence, the Psq motif. The Psq domain seems to be structurally related to known DNA-binding domains, both in its repetitive character and in the putative three-alpha-helix structure of the Psq motif, but it lacks the conserved sequence signatures of the classical eukaryotic DNA-binding motifs. Psq may thus represent the prototype of a new family of DNA-binding proteins.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.43.28504