Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images

Computational optical-sectioning microscopy with a nonconfocal microscope is fundamentally limited because the optical transfer function, the Fourier transform of the point-spread function, is exactly zero over a conic region of the spatial-frequency domain. Because of this missing cone of optical i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 1998-10, Vol.15 (10), p.2609-2619
1. Verfasser: Conchello, J A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational optical-sectioning microscopy with a nonconfocal microscope is fundamentally limited because the optical transfer function, the Fourier transform of the point-spread function, is exactly zero over a conic region of the spatial-frequency domain. Because of this missing cone of optical information, images are potentially artifactual. To overcome this limitation, superresolution, in the sense of band extrapolation, is necessary. I present a frequency-domain analysis of the expectation-maximization algorithm for maximum-likelihood image estimation that shows how the algorithm achieves this band extrapolation. This analysis gives the theoretical absolute bandwidth of the restored image; however, this absolute value may not be realistic in many cases. Then a second analysis is presented that assumes a Gaussian point-spread function and a specimen function and shows more realistic behavior of the algorithm and demonstrates some of its properties. Experimental results on the superresolving capability of the algorithm are also presented.
ISSN:1084-7529
1520-8532
DOI:10.1364/josaa.15.002609