The metal function in the reactions of bovine serum amine oxidase with substrates and hydrazine inhibitors
Bovine serum amine oxidase (BSAO) reacts with 2-hydrazinopyridine, which binds the organic co-factor 2,4,5-trihydroxyphenylalanine quinone, forming a band at 435 nm. The band shifts to 526 nm around 60 degrees C, to 415 nm upon denaturation, but only shifts to 429 nm upon Cu2+ depletion. Its wavelen...
Gespeichert in:
Veröffentlicht in: | Journal of biological inorganic chemistry 1999-06, Vol.4 (3), p.348-353 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bovine serum amine oxidase (BSAO) reacts with 2-hydrazinopyridine, which binds the organic co-factor 2,4,5-trihydroxyphenylalanine quinone, forming a band at 435 nm. The band shifts to 526 nm around 60 degrees C, to 415 nm upon denaturation, but only shifts to 429 nm upon Cu2+ depletion. Its wavelength and intensity suggest that the adduct has the azo conformation, whilst the same adduct of crystalline Escherichia coli amine oxidase (ECAO) shows the hydrazone conformation in the X-ray structure. The steady state kinetics of aminomethyl- and aminoethylpyridines confirm that the formation of the product Schiff base, analogous to the azo form of the 2-hydrazinopyridine adduct, is not hindered in solution. The structural stability of the adduct in the absence of Cu2+ is taken to imply hydrogen bonding of the pyridyl nitrogen to a conserved aspartate, as in the ECAO adduct. Thus the ECAO adduct provides a good model for a transient intermediate leading to formation of the BSAO azo adduct. On the basis of this model and of the catalytic competence of Co(2+)-substituted BSAO, confirmed by the present data, a catalytic reaction scheme is proposed. |
---|---|
ISSN: | 0949-8257 1432-1327 |
DOI: | 10.1007/s007750050321 |