Controlled destabilization of a liposomal drug delivery system enhances mitoxantrone antitumor activity
Programmable fusogenic vesicles (PFVs) are lipid-based drug-delivery systems that exhibit time-dependent destabilization. The rate at which this destabilization occurs is determined by the exchange rate of a bilayer-stabilizing component, polyethylene glycol-phosphatidylethanolamine (PEG-PE) from th...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 1999-08, Vol.17 (8), p.775-779 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Programmable fusogenic vesicles (PFVs) are lipid-based drug-delivery systems that exhibit time-dependent destabilization. The rate at which this destabilization occurs is determined by the exchange rate of a bilayer-stabilizing component, polyethylene glycol-phosphatidylethanolamine (PEG-PE) from the vesicle surface. This exchange rate is controlled, in turn, by the acyl chain composition of the PEG-PE. We describe in vitro and in vivo studies using PFVs as delivery vehicles for the anticancer drug mitoxantrone. We demonstrate that the PEG-PE acyl composition determined the rate at which PFVs are eliminated from plasma after intravenous administration, and the rate of mitoxantrone leakage from PFV. The nature of the PEG-PE component also determined the antitumor efficacy of mitoxantrone-loaded PFV in murine and human in murine and human xenograft tumor models. Increased circulation time and improved activity were obtained for PFV containing PEG-PE with an 18-carbon acyl chain length, as a result of slower vesicle destabilization. |
---|---|
ISSN: | 1087-0156 1546-1696 |
DOI: | 10.1038/11710 |