Genetic control of the humoral responses to xenografts. III. Identification of the immunoglobulin V(H) genes responsible for encoding rat immunoglobin G xenoantibodies to hamster heart grafts
We have previously reported that the early phases of the immune response of rats to hamster xenografts are characterized by the production of IgM xenoantibodies encoded by a restricted group of Ig germline V(H) genes (V(H)HAR family). In the later phases of the reaction, an IgM to IgG isotype switch...
Gespeichert in:
Veröffentlicht in: | Transplantation 1999-07, Vol.68 (1), p.15-24 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have previously reported that the early phases of the immune response of rats to hamster xenografts are characterized by the production of IgM xenoantibodies encoded by a restricted group of Ig germline V(H) genes (V(H)HAR family). In the later phases of the reaction, an IgM to IgG isotype switch occurs and our study examines the structure of the rearranged V(H)HAR genes used to encode IgG antibodies after this isotype switch.
A quantitative polymerase chain reaction was used to investigate the changes in the levels of V(H)HAR+ IgG mRNA seen after xenotransplantation. cDNA libraries specific for V(H)HAR+ Iggamma chain were established from total RNA extracted from splenocytes of naive rats and xenograft recipients of hamster hearts at days 4, 8, 21, and 28 posttransplantation. Colony filter hybridization was used to estimate the relative frequency of the use of individual V(H)HAR+ IgG subclasses. Selected IgG clones from day 21 cDNA libraries were sequenced and analyzed for VH-D-J(H) gene usage and antibody combining site structure.
The level of mRNA for V(H)HAR+ IgG increased 6-fold in xenograft recipients at day 21 post-transplantation when compared with naive animals. The relative frequency of isotype usage for V(H)HAR+ IgG1 antibodies alone increased from 22.3% at day 0 to 37.4% at day 21 PTx. Ten IgG clones from the day 21 cDNA libraries have been sequenced for the rearranged V(H)-D-J(H) genes. Thirty percent (3/10) of these IgG clones used V(H)HAR genes for the coding of heavy chain variable region with limited numbers of nucleic acid substitutions (>98% identity with their germline progenitors) although others demonstrated increased variation in nucleotide sequences (95-97% identity) when compared with germline V(H) genes. Analysis of the canonical binding site structure from the predicted amino acid sequences demonstrated that the majority of IgG clones (9/10) displayed a similar pattern of conserved configurations for their combining sites.
The change in IgM to IgG antibody production in the later stages of the humoral immune response of rats to hamster xenografts is associated with an IgM to IgG isotype switch and an increased production of antibodies of the IgG1 isotype. Rat anti-hamster IgG xenoantibodies continue to express the V(H)HAR family of V(H) genes, many in their original germline configuration, to encode antibody recognition of the hamster target antigens. There are, however, a majority of antibodies for which the V(H) genes expres |
---|---|
ISSN: | 0041-1337 |
DOI: | 10.1097/00007890-199907150-00005 |