Is Silicified Wet-Granulated Microcrystalline Cellulose Better than Original Wet-Granulated Microcrystalline Cellulose?
The purpose of this study was to investigate the effect of granulating water level on the physical-mechanical properties of microcrystalline cellulose (MCC) and silicified microcrystalline cellulose (SMCC). Granulations containing either MCC or SMCC were manufactured at different water levels using...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical development and technology 1999, Vol.4 (3), p.431-437 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study was to investigate the effect of granulating water level on the physical-mechanical properties of microcrystalline cellulose (MCC) and silicified microcrystalline cellulose (SMCC). Granulations containing either MCC or SMCC were manufactured at different water levels using a high-shear mixer and were then tray-dried. The water level ranged from 0 to 100%. The granules were evaluated for size, granular and true density, porosity, flow, compactibility, compressibility, and strain-rate sensitivity index (SRS). Increasing the water level affected the size, increased the granular density and flow properties of the granules, and decreased the porosity and compactibility. The compactibilities for both materials were similar and acceptable at each granulating water level up to 40%. They both showed poor compactibility at higher water levels. Yield values and SRSs revealed that MCC and SMCC have similar compressibility, and that both exhibit a plastic component to the deformation process. The granulating water level had no statistically significant effect on the compressibility or the SRS for MCC or SMCC. SMCC did not offer practical advantages over MCC, other than better flow in the powder form, which could be attributed to slightly larger particle size and the presence of silicon dioxide in its structure. |
---|---|
ISSN: | 1083-7450 1097-9867 |
DOI: | 10.1081/PDT-100101379 |