Effect of recruitment and body positioning on lung volume and oxygenation in acute lung injury model
The mechanism of oxygenation improvement after recruitment manoeuvres or prone positioning in acute lung injury or acute respiratory distress syndrome is still unclear. We tried to determine the mechanism responsible for the effects of recruitment manoeuvres or prone positioning on lung aeration usi...
Gespeichert in:
Veröffentlicht in: | Anaesthesia and intensive care 2008-11, Vol.36 (6), p.792-797 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanism of oxygenation improvement after recruitment manoeuvres or prone positioning in acute lung injury or acute respiratory distress syndrome is still unclear. We tried to determine the mechanism responsible for the effects of recruitment manoeuvres or prone positioning on lung aeration using a whole lung computed tomography scan in an oleic acid induced acute lung injury canine model. Twelve adult mongrel dogs were allocated into either the supine group (n=6) or the prone group (n=6). After the establishment of acute lung injury, three recruitment manoeuvres were performed at one-hour intervals. Haemodynamic and ventilatory variables, arterial blood gas analyses and CT scans of the whole lung were obtained 90 minutes after oleic acid injection and five minutes before and after each recruitment manoeuvre. Recruitment manoeuvres in the supine position improved oxygenation (P=0.025) that correlated with increase of the poorly- and well-aerated dorsal (dependent) lung volume (r=0.436, P=0.016). Prone positioning increased oxygenation (P=0.004) that also correlated with increase of the poorly- and well-aerated dorsal (nondependent) lung volume (r=0.787, P |
---|---|
ISSN: | 0310-057X 1448-0271 |
DOI: | 10.1177/0310057x0803600607 |