Ocular aberrations up to the infrared range: from 632.8 to 1070 nm

Ocular aberrations were measured by using a Hartmann-Shack wavefront sensor in the visible and infrared portions of the spectrum. In the latter, wavelengths 1030, 1050 and 1070 nm were used for the first time for the study of the optical quality of the eye. In this spectral range the retinal photore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2008-12, Vol.16 (26), p.21199-21208
Hauptverfasser: Fernández, Enrique J, Artal, Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ocular aberrations were measured by using a Hartmann-Shack wavefront sensor in the visible and infrared portions of the spectrum. In the latter, wavelengths 1030, 1050 and 1070 nm were used for the first time for the study of the optical quality of the eye. In this spectral range the retinal photoreceptors barely respond, so the radiation is virtually invisible for the subject. The results were confronted with those obtained by the same system at 780 and 632.8 nm. Monochromatic aberrations were found to be similar from the visible to the infrared. Longitudinal chromatic aberration was experimentally obtained, being approximately 1 D from 632.8 to 1070 nm. The feasibility of using the infrared for studying the eye was demonstrated. The employment of the infrared has an enormous potential for the better understanding of the impact and influence of the aberrations in vision with adaptive optics. It allows for measuring and controlling aberrations whilst the subject might eventually perform visual tests, with no interference from the beacon light.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.16.021199