Characterization of cell surface lectin-binding patterns of human airway epithelium

Glycosylated structures on the cell surface have a role in cell adhesion, migration, and proliferation. Repair of the airway epithelium after injury requires each of these processes, but the normal cell surface glycosylation of non-mucin producing airway epithelial cells is unknown. We examined cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular histology 1999-03, Vol.31 (3), p.145-151
Hauptverfasser: Dorscheid, D R, Conforti, A E, Hamann, K J, Rabe, K F, White, S R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glycosylated structures on the cell surface have a role in cell adhesion, migration, and proliferation. Repair of the airway epithelium after injury requires each of these processes, but the normal cell surface glycosylation of non-mucin producing airway epithelial cells is unknown. We examined cell surface glycosylation in human airway epithelial cells in tissue sections and in human airway epithelial cell lines in culture. Thirty-eight lectin probes were used to determine specific carbohydrate residues by lectin-histochemistry. Galactose or galactosamine-specific lectins labeled basal epithelial cells, lectins specific for several different carbohydrate structures bound columnar epithelial cells, and fucose-specific lectins labeled all airway epithelial cells. The epithelial cell lines 1HAEo- and 16HBE14o- bound lectins that were specific to basal epithelial cells. Flow cytometry of these cell lines with selected lectins demonstrated that lectin binding was to cell surface carbohydrates, and revealed possible hidden tissue antigens on dispersed cultured cells. We demonstrate specific lectin-binding patterns on the surface of normal human airway epithelial cells. The expression of specific carbohydrate residues may be useful to type epithelial cells and as a tool to examine cell events involved in epithelial repair.
ISSN:0018-2214
1567-2379
1567-2387
DOI:10.1023/A:1003599916558