Asymmetrical optical lenslet array realized by spatial light modulator for measuring toroidal surfaces
The Shack-Hartmann wavefront sensor (SHWS) recently has been extensively researched for optical surface metrology due to its extendable dynamic range compared with interferometry technique. In this paper, we proposed to use a digital SHWS to measure toroidal surfaces, which are widely used in many o...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2008-12, Vol.47 (36), p.6778-6783 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Shack-Hartmann wavefront sensor (SHWS) recently has been extensively researched for optical surface metrology due to its extendable dynamic range compared with interferometry technique. In this paper, we proposed to use a digital SHWS to measure toroidal surfaces, which are widely used in many optical systems due to their different symmetries and curvatures in the X and Y directions. For what is believed to be the first time, an asymmetrical optical lenslet array implemented by a spatial light modulator was presented to tackle the measurement challenge. This unconventional design approach has a great advantage to provide different optical powers in the X and Y directions so that focusing spots can be formed and captured on the detector plane for accurate centroid finding and precise wavefront evaluation for 3D shape reconstruction of the toroidal surface. A digital SHWS system with this extraordinary microlens array was built to verify the design concept, and the experimental results were presented and analyzed. |
---|---|
ISSN: | 0003-6935 2155-3165 1539-4522 |
DOI: | 10.1364/AO.47.006778 |