Microcirculatory hemodynamics in oral tissues with reference to neurogenic response and reactive oxygen species interaction

The primary purpose of the microcirculation is to transport nutrients and oxygen and to remove metabolic waste products from tissues. It is also well known that the fundamental mechanism for vascular control is the local regulation of the basal vascular tone, which is reinforced by blood pressure an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Folia Pharmacologica Japonica 1999, Vol.113(4), pp.219-225
Hauptverfasser: OKABE, Eiichiro, TODOKI, Kazuo
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The primary purpose of the microcirculation is to transport nutrients and oxygen and to remove metabolic waste products from tissues. It is also well known that the fundamental mechanism for vascular control is the local regulation of the basal vascular tone, which is reinforced by blood pressure and counteracted by tissue metabolites. Thus, the well-being of the tissue depends on the circulatory transport process, which is governed by many functional parameters of the microcirculation such as blood flow, blood volume, intravascular and extravascular pressures, and capillary permeability. Inflammatory reactions in oral tissues can be initiated by many different insults to the tissues, and the reaction itself can be expressed in various ways. In addition, the tissues seem to have many “backup” systems, so that any one response can be produced in several ways, which is important for a reaction that has a survival value. A recent concept is that repeated stimulation of sensitive teeth may induce pulpal changes; this could occur through induction of neurogenic inflammation and alteration of pulpal blood flow. One possibility is that production of reactive oxygen species, as well as release of the sensory neuropeptides, at sites of inflammation contributes to alterations in local blood flow. In addition to the part played by the neurogenic mediators, nitric oxide participation and its interaction with oxygen-derived free radicals in oral tissue hemodynamics are also discussed.
ISSN:0015-5691
1347-8397
DOI:10.1254/fpj.113.219