Structure-activity profiles of eleutherobin analogs and their cross-resistance in Taxol-resistant cell lines
Eleutherobin, a natural product, is an antimitotic agent that promotes the polymerization of stable microtubules. Although its mechanism of action is similar to that of Taxol, its structure is distinct. A structure-activity profile of synthetic eleutherobin derivatives that have modifications at C3,...
Gespeichert in:
Veröffentlicht in: | Cancer chemotherapy and pharmacology 1999, Vol.44 (2), p.131-137 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eleutherobin, a natural product, is an antimitotic agent that promotes the polymerization of stable microtubules. Although its mechanism of action is similar to that of Taxol, its structure is distinct. A structure-activity profile of synthetic eleutherobin derivatives that have modifications at C3, C8 and C15 was undertaken to define the structural requirements for microtubule stabilization and cross-resistance in Taxol-resistant cell lines.
The biological activity of five eleutherobin analogs was assessed using three techniques: (1) cytotoxicity and drug-resistance in three paired Taxol-sensitive and -resistant cell lines; (2) polymerization of microtubule protein in vitro in the absence of GTP and (3) induction of microtubule bundle formation in NIH3T3 cells.
Eleutherobin had an IC50 value comparable to that of Taxol, whereas neoeleutherobin, which has a carbohydrate domain that is enantiomeric with that of the parent compound, was less cytotoxic and had 69% of the maximum microtubule polymerization ability of eleutherobin. Both of these compounds exhibited cross-resistance in MDRI-expressing cell lines. Removal or replacement of the C15 sugar moiety resulted in reduced microtubule polymerization and cytotoxicity compared to eleutherobin and loss of cross-resistance in the cell lines SKVLB and J7-T3-1.6, both of which express high levels of P-glycoprotein. By contrast, removal of the urocanic acid group at C8 resulted in virtually complete abrogation of biological activity. The compound lost its ability to polymerize microtubules, and its cytotoxicity was reduced by a minimum of 2000-fold in lung carcinoma A549 cells.
Removal or modification of the sugar moiety alters the cytotoxic potency of eleutherobin and its pattern of cross-resistance in Taxol-resistant cells, although such compounds retain a small percentage of the microtubule-stabilizing activity of eleutherobin. The N(1)-methylurocanic acid moiety of eleutherobin, or perhaps some other substituent at the C8 position, is essential for Taxol-like activity. These findings will be important for the future design and the synthesis of new and more potent eleutherobin derivatives. |
---|---|
ISSN: | 0344-5704 1432-0843 |
DOI: | 10.1007/s002800050957 |