Evidence for Two Nonoverlapping Functional Domains in the Potato Virus X 25K Movement Protein

To study subdomain organization of the potato virus X (PVX) movement protein (MP) encoded by the first gene in the triple gene block (TGB), we mutated the 25-kDa TGBp1 protein. The N-terminal deletion of the helicase motifs I, IA, and II resulted in loss of the ATPase activity and RNA binding. A fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 1999-07, Vol.260 (1), p.55-63
Hauptverfasser: Morozov, S.Yu, Solovyev, A.G., Kalinina, N.O., Fedorkin, O.N., Samuilova, O.V., Schiemann, J., Atabekov, J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To study subdomain organization of the potato virus X (PVX) movement protein (MP) encoded by the first gene in the triple gene block (TGB), we mutated the 25-kDa TGBp1 protein. The N-terminal deletion of the helicase motifs I, IA, and II resulted in loss of the ATPase activity and RNA binding. A frameshift mutation truncating the C-terminal motifs V and VI gave rise to increase of the TGBp1 ATPase activity and had little effect on RNA binding in vitro. Fusions of the green fluorescent protein with 25-kDa MP and its derivative lacking motifs V–VI exhibited similar fluorescence patterns in epidermal cells of Nicotiana benthamiana leaves. Cell-to-cell movement of the 25K-deficient PVX genome was not complemented by the TGBp1 of Plantago asiatica mosaic potexvirus (PlAMV) but was efficiently complemented by a chimeric TGBp1 consisting of the N-terminal part of PlAMV protein (motifs I–IV) and the PVX-specific C-terminal part (motifs V–VI). These results suggest that NTP hydrolysis, RNA binding, and targeting to the specific cellular compartment(s) are associated with the N-terminal domain of the TGBp1 including the helicase motifs I–IV and that the C-terminal domain is involved in specific interactions with other virus proteins.
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.1999.9788