Cellular expression of a leech netrin suggests roles in the formation of longitudinal nerve tracts and in regional innervation of peripheral targets
Netrins are secreted, diffusible proteins that direct axonal growth. To study the functions of netrins in the relatively simple and easily accessible nervous system of the leech Hirudo medicinalis, we have cloned a leech netrin and have characterized its expression during embryogenesis. By probing a...
Gespeichert in:
Veröffentlicht in: | Journal of neurobiology 1999-07, Vol.40 (1), p.103-115 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Netrins are secreted, diffusible proteins that direct axonal growth. To study the functions of netrins in the relatively simple and easily accessible nervous system of the leech Hirudo medicinalis, we have cloned a leech netrin and have characterized its expression during embryogenesis. By probing a leech cDNA library at low stringency with chick netrin probes, we have identified a complete cDNA clone that bears significant sequence similarity to netrins of other species. In situ hybridization and dye filling of individual neurons show that this leech netrin is expressed by several identifiable central neurons in every segmental ganglionic primordium during early stages of embryogenesis. Some of these neurons, including the bipolar cells which are thought to be involved in setting up longitudinal tracts, express this gene only transiently during embryogenesis, while others continue to express it in the adult. In addition, leech netrin is expressed by ventral but not dorsal longitudinal muscle cells in each segment before central neurons project their axons to the periphery. These highly specific expression patterns are consistent with the hypothesis that leech netrin plays a role in forming the major interganglionic neuronal tracts and in defining ventral versus dorsal domains of peripheral innervation. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 103–115, 1999 |
---|---|
ISSN: | 0022-3034 1097-4695 |
DOI: | 10.1002/(SICI)1097-4695(199907)40:1<103::AID-NEU9>3.0.CO;2-5 |