Neural Precursors from Canine Skin: A New Direction for Testing Autologous Cell Replacement in the Brain
Recent work indicates that neural progenitors can be isolated from the skin of rodents and humans. The persistence of these cells in accessible adult tissue raises the possibility of their exploitation for research and therapeutic purposes. This study reports on the derivation, culture, and characte...
Gespeichert in:
Veröffentlicht in: | Stem cells and development 2008-12, Vol.17 (6), p.187-1094 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent work indicates that neural progenitors can be isolated from the skin of rodents and humans. The persistence of these cells in accessible adult tissue raises the possibility of their exploitation for research and therapeutic purposes. This study reports on the derivation, culture, and characterization of homogenous canine skin-derived neuroprecursor cells (SKiNPs) from mature animals. Canine tissue was used because naturalistic brain diseases in community-dwelling dogs are emerging as ecologically sound models for a range of neurological conditions. Adult SKiNPs were initially isolated as neurospheres and then cultured for 10-15 passages in an adherent monolayer assay. Serumfree expansion conditions contained B-27, 20 ng/mL EGF, and 40 ng/mL bFGF. Gene expressions by PCR indicated expression of
nestin
,
CD133
,
NCAM
, and
FGF2R
, but not
GFAP
. Highly uniform expression of
nestin
(76 ± 8.3%), NCAM (84 ± 3.3%),
III-tubulin
(96 ± 4.3%), and
CD133
(68 ± 13.5%) was also observed. Directed differentiation of SKiNPs in the presence of serum induced
IIItubulin
,
NSE
,
NCAM
, and
MAP2
in >90% of differentiated cells by immunophenotype analysis. Our culture system rapidly induces canine skin cells into neural precursors, maintains
nestin
expression in more than 75% of proliferating cells, and generates an almost universal neuronal-like phenotype after 7 days of in vitro differentiation. Their biological characteristics are suggestive of transiently amplifying fate-restricted neuroprecursors rather than true neural stem cells. This system may be an effective alternative for autologous neurorestorative cell replacement in canine models for further translational research. |
---|---|
ISSN: | 1547-3287 1557-8534 |
DOI: | 10.1089/scd.2008.0008 |