Reactions of Lipid-derived Malondialdehyde with Collagen
Malondialdehyde is a product of fatty acid oxidation ( e.g. from low density lipoprotein) implicated in the damage of proteins such as collagen in the cardiovascular system (Chio, K. J., and Tappel, A. L. (1969) Biochemistry 8, 2821â2827). Its concentration is raised in diabetic subjects probably...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1999-07, Vol.274 (28), p.19661-19669 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Malondialdehyde is a product of fatty acid oxidation ( e.g. from low density lipoprotein) implicated in the damage of proteins such as collagen in the cardiovascular system (Chio, K.
J., and Tappel, A. L. (1969) Biochemistry 8, 2821â2827). Its concentration is raised in diabetic subjects probably as a side effect of increased protein glycation.
Collagen has enzyme-catalyzed cross-links formed between its individual molecules that are essential for maintaining the structure
and flexibility of the collagen fiber. The cross-link dehydro-hydroxylysinonorleucine reacts irreversibly with 10 m m malondialdehyde at least 3 orders of magnitude faster than glucose reactions with lysine or arginine, such that there is
little cross-link left after 1 h at 37â°C. Other cross-links and glycated elements of collagen are also vulnerable. Several
possible products of malondialdehyde with collagen cross-links are proposed, and the potential involvement of collagenous
histidine in these reactions is discussed. We have also isolated N
δ -(2-pyrimidyl)- l -ornithine from collagenous arginine reacted with malondialdehyde. The yields of this product were considerably higher than
those from model reactions, being approximately 2 molecules/collagen molecule after 1 day at 37â°C in 10 m m malondialdehyde. Collagenous lysine-derived malondialdehyde products may have been present but were not protected from protein
acid hydrolysis by standard reduction techniques, thus resulting in a multitude of fragmented products. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.274.28.19661 |