Structure of a Shigella effector reveals a new class of ubiquitin ligases

The IpaH proteins from Shigella show ubiquitin-ligase activity but lack obvious sequence similarity to HECT- or RING-type ubiquitin ligases. The crystal structure of IpaH3 reveals a two-domain protein with HECT-like catalytic activity mapped to a C-terminal domain of novel fold. These findings sugge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2008-12, Vol.15 (12), p.1302-1308
Hauptverfasser: Zhu, Yongqun, Li, Hongtao, Hu, Liyan, Wang, Jiayi, Zhou, Yan, Pang, Zhimin, Liu, Liping, Shao, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The IpaH proteins from Shigella show ubiquitin-ligase activity but lack obvious sequence similarity to HECT- or RING-type ubiquitin ligases. The crystal structure of IpaH3 reveals a two-domain protein with HECT-like catalytic activity mapped to a C-terminal domain of novel fold. These findings suggest that IpaH proteins represent a new family of ubiquitin ligases, a conclusion supported by results from a related study by Tyers et al . Bacterial pathogens have evolved effector proteins with ubiquitin E3 ligase activities through structural mimicking. Here we report the crystal structure of the Shigella flexneri type III effector IpaH3, a member of the leucine-rich repeat (LRR)-containing bacterial E3 family. The LRR domain is structurally similar to Yersinia pestis YopM and potentially binds to substrates. The structure of the C-terminal E3 domain differs from the typical RING- and HECT-type E3s. IpaH3 synthesizes a Lys48-linked ubiquitin chain, and the reaction requires noncovalent binding between ubiquitin and a specific E2, UbcH5. Free ubiquitin serves as an acceptor for IpaH3-catalyzed ubiquitin transfer. Cys363 within a conserved CXD motif acts as a nucleophile to catalyze ubiquitin transfer through a transthiolation reaction. The D365N mutant is devoid of E3 activities but turns into a potent ubiquitin-E2 thioesterase. Our analysis establishes a structurally and mechanistically distinct class of ubiquitin ligases found exclusively in pathogenic or symbiotic bacteria.
ISSN:1545-9993
1545-9985
DOI:10.1038/nsmb.1517