Solution of the Percus-Yevick equation for hard hyperspheres in even dimensions
We solve the Percus-Yevick equation in even dimensions by reducing it to a set of simple integrodifferential equations. This work generalizes an approach we developed previously for hard disks. We numerically obtain both the pair correlation function and the virial coefficients for a fluid of hypers...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2008-10, Vol.129 (14), p.144506-144506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We solve the Percus-Yevick equation in even dimensions by reducing it to a set of simple integrodifferential equations. This work generalizes an approach we developed previously for hard disks. We numerically obtain both the pair correlation function and the virial coefficients for a fluid of hyperspheres in dimensions d = 4, 6, and 8, and find good agreement with the available exact results and Monte Carlo simulations. This paper confirms the alternating character of the virial series for d > or = 6 and provides the first evidence for an alternating character for d = 4. Moreover, we show that this sign alternation is due to the existence of a branch point on the negative real axis. It is this branch point that determines the radius of convergence of the virial series, whose value we determine explicitly for d = 4, 6, 8. Our results complement, and are consistent with, a recent study in odd dimensions [R. D. Rohrmann et al., J. Chem. Phys. 129, 014510 (2008)]. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2991338 |