Effect of insulin-like growth factor I on HIV type 1 long terminal repeat-driven chloramphenicol acetyltransferase expression

In this study, we have investigated the ability of insulin-like growth factor I (IGF-I) to inhibit HIV long terminal repeat (LTR)-driven gene expression. Using COS 7 cells cotransfected with tat and an HIV LTR linked to a chloramphenicol acetyltransferase (CAT) reporter, we observed that physiologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIDS research and human retroviruses 1999-06, Vol.15 (9), p.829-836
Hauptverfasser: GERMINARIO, R. J, COLBY-GERMINARIO, S. P, ACEL, A, CHANDOK, R, DAVISON, K, MAK, J, KLEIMAN, L, FAUST, E, WAINBERG, M. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we have investigated the ability of insulin-like growth factor I (IGF-I) to inhibit HIV long terminal repeat (LTR)-driven gene expression. Using COS 7 cells cotransfected with tat and an HIV LTR linked to a chloramphenicol acetyltransferase (CAT) reporter, we observed that physiological levels of IGF-I (10(-9) M) significantly inhibited CAT expression in a concentration- and time-dependent manner. IGF-I did not inhibit CAT expression in COS 7 cells transfected with pSVCAT, and did not affect CAT expression in the absence of cotransfection with tat. Transfection of HIV-1 proviral DNA into COS 7 cells +/- IGF-I resulted in a significant decrease (p < 0.05) in infectious virion production. Both IGF-I and Ro24-7429 inhibited LTR-driven CAT expression, while TNF-alpha-enhanced CAT expression was not affected by IGF-I. On the other hand, a plasmid encoding parathyroid hormone-related peptide exhibited dramatic additivity of inhibition of CAT expression in COS 7 cells. Finally, we show that in Jurkat or U937 cells cotransfected with HIVLTRCAT/tat, IGF-I significantly inhibited CAT expression. Further, interleukin 4 showed in U937 cells inhibition of CAT expression that was not additive to IGF-I induced inhibition. Our data demonstrate that IGF-I can specifically inhibit HIVLTRCAT expression. This inhibition may occur at the level of the tat/TAR interaction. Finally, this IGF-I effect is seen in target cell lines and similar paths of inhibition may be involved in the various cell types employed.
ISSN:0889-2229
1931-8405
DOI:10.1089/088922299310737