Dietary supplementation with arachidonic and docosahexaenoic acids has no effect on pulmonary surfactant in artificially reared infant rats
Despite the potential use of long‐chain polyunsaturated fatty acid (LCPUFA) supplementation to promote growth and neural development of the infant, little is known about potential harmful effects of the supplementation. The present study determined whether supplementation with arachidonic acid (AA)...
Gespeichert in:
Veröffentlicht in: | Lipids 1999-05, Vol.34 (5), p.483-488 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the potential use of long‐chain polyunsaturated fatty acid (LCPUFA) supplementation to promote growth and neural development of the infant, little is known about potential harmful effects of the supplementation. The present study determined whether supplementation with arachidonic acid (AA) and/or docosahexaenoic acid (DHA) in rat milk formula (RMF) affects saturation of pulmonary surfactant phospholipids (PL). Beginning at 7 d of age, infant rats were artificially fed for 10 d with RMF supplemented with AA at 0, 0.5, and 1.0% of total fatty acid, or supplemented with DHA at 0, 0.5, and 1.0%, or cosupplemented with AA and DHA at levels of 0∶0, 0.5∶0.3, and 1.0∶0.6% of the fat blend. Lung tissue PL contained 43 weight percent palmitate (16∶0) of total fatty acids in infant rats fed the unsupplemented RMF. The supplementation with AA at both 0.5 and 1.0% decreased the weight percentage of 16∶0 and stearate (18∶0), indicating a decrease in saturation of PL. The observed decreases were accompanied by increases in AA and linoleic acid (18∶2n−6). Surfactant phosphatidylcholine (PC) consisted of 71 weight percent 16∶0 in the unsupplemented group, and this highly saturated PC was not altered by the cosupplementation with AA and DHA although there was a slight increase in DHA. Similarly, the cosupplementation did not change fatty acid composition of surfactant PL when compared with the unsupplemented group. The cosupplementation slightly decreased the weight percentage of 16∶0 with a proportional increase in 18∶0 leading to an unchanged weight percentage of total saturated fatty acids. These results suggest that, unlike lung tissue PL, the composition of saturated fatty acids in surfactant PL, particularly PC, is resistant to change by dietary AA and DHA supplementation. This, together with the unchanged concentration of total fatty acids in surfactant PC, indicates that LCPUFA cosupplementation causes no effect on pulmonary surfactant. |
---|---|
ISSN: | 0024-4201 1558-9307 |
DOI: | 10.1007/s11745-999-0388-2 |