Effect of 0.2 T static magnetic field on human neurons: remodeling and inhibition of signal transduction without genome instability
We describe the effect of the static magnetic field generated by a 0.2 T magnetic resonance tomograph on a normal human neuronal cell culture (FNC-B4). After 15 min exposure cells showed dramatic changes of morphology: they formed vortexes of cells and exposed branched neurites featuring synaptic bu...
Gespeichert in:
Veröffentlicht in: | Neuroscience letters 1999-06, Vol.267 (3), p.185-188 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe the effect of the static magnetic field generated by a 0.2 T magnetic resonance tomograph on a normal human neuronal cell culture (FNC-B4). After 15 min exposure cells showed dramatic changes of morphology: they formed vortexes of cells and exposed branched neurites featuring synaptic buttons. At the same time, thymidine incorporation and inositol lipid signaling were significantly reduced. Control (sham exposed) or non-neuronal cells (mouse leukemia, and human breast carcinoma cells) did not show any alteration following exposure. Endothelin-1 release from FNC-B4 cells was also dramatically reduced after 5 min exposure. However, PCR analysis of 12 DNA microsatellites selected as gauges of genome instability, did not reveal any alteration following exposure, thus ruling out a direct effect of the magnetic field on DNA stability. These data can be interpreted as a specific effect of the static magnetic field on human neuronal cells and are consistent with the induction of remodeling and differentiation; they demonstrate that fields below 0.5 T have significant biological effects on human neurons. |
---|---|
ISSN: | 0304-3940 1872-7972 |
DOI: | 10.1016/S0304-3940(99)00362-6 |