Induction of β-sheet structure in amyloidogenic peptides by neutralization of aspartate: a model for amyloid nucleation
Amyloid fibril formation is widely accepted as a critical step in all types of amyloidosis. Amyloid fibrils derived from different amyloidogenic proteins share structural elements including β-sheet secondary structure and similar tertiary structure. While some amyloidogenic proteins are rich in β-sh...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1999-06, Vol.289 (2), p.413-428 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Amyloid fibril formation is widely accepted as a critical step in all types of amyloidosis. Amyloid fibrils derived from different amyloidogenic proteins share structural elements including β-sheet secondary structure and similar tertiary structure. While some amyloidogenic proteins are rich in β-sheet in their soluble form, others, like Alzheimer β-amyloid peptide (Aβ) or serum amyloid A, must undergo significant structural transition to acquire a high β-sheet content. We postulate that Aβ and other amyloidogenic proteins undergo a transition to β-sheet as a result of aging-related chemical modifications of aspartyl residues to the form of succinimide or isoaspartyl methyl ester. We hypothesize that spontaneous cyclization of aspartate residues in amyloidogenic proteins can serve as a nucleation event in amyloidogenesis. To test this hypothesis, we synthesized a series of designed peptides having the sequence VTVKVXAVKVTV, where X represents aspartic acid or its derivatives. Studies using circular dichroism showed that neutralization of the aspartate residue through the formation of a methyl ester or an amide, or replacement of aspartate with glutamate led to an increased β-sheet content at neutral and basic pH. A higher content of β-sheet structure correlated with increased propensity for fibril formation and decreased solubility at neutral pH. |
---|---|
ISSN: | 0022-2836 1089-8638 |
DOI: | 10.1006/jmbi.1999.2768 |