Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals

This study describes and tests a new method of calculating a shape metric known as the relief index (RFI) on lower second molars of extant euarchontan mammals, including scandentians (treeshrews), dermopterans (flying lemurs), and prosimian primates (strepsirhines and tarsiers). RFI is the ratio of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of human evolution 2008-12, Vol.55 (6), p.1118-1137
1. Verfasser: Boyer, Doug M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study describes and tests a new method of calculating a shape metric known as the relief index (RFI) on lower second molars of extant euarchontan mammals, including scandentians (treeshrews), dermopterans (flying lemurs), and prosimian primates (strepsirhines and tarsiers). RFI is the ratio of the tooth crown three-dimensional area to two-dimensional planar area. It essentially expresses hypsodonty and complexity of tooth shape. Like other measurements of complexity, RFI ignores taxon-specific features, such as certain cusps and crests, which are usually considered in more traditional studies of tooth function. Traditional statistical analyses of the study sample show that RFI distinguishes taxa with differing amounts of structural carbohydrates in their diets, with frugivore/gramnivores being significantly lower in RFI than omnivores, and insectivores/folivores being significantly higher in RFI than the other two. Information on absolute size, or body mass, is needed to reliably parse out insectivores and folivores; however, if the study sample is limited to Primates, RFI alone distinguishes many folivores (lower) from insectivores (higher). Finally, phylogenetically independent contrasts of RFI and dietary preference are strongly correlated with one another, indicating that variance in RFI is better explained by dietary diversity than phylogenetic affinity in this sample. Because of the accuracy and phylogenetic insensitivity of the RFI among Euarchonta, this method can be applied to fossil primates and stem-primates (plesiadapiforms) and used to elucidate and compare their dietary preferences. Such comparisons are important for developing a more detailed view of primate evolution.
ISSN:0047-2484
1095-8606
DOI:10.1016/j.jhevol.2008.08.002