Role of GPR81 in lactate-mediated reduction of adipose lipolysis

Heavy exercise or oxygen deficit often links with higher levels of arterial lactate and lower levels of plasma free fatty acids (FFA). Treatment with lactate reduces circulating levels of FFA in vivo and lipolysis in adipose tissues in vitro. However, the underlying mechanism has remained unclear. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2008-12, Vol.377 (3), p.987-991
Hauptverfasser: Cai, Tian-Quan, Ren, Ning, Jin, Lan, Cheng, Kang, Kash, Shera, Chen, Ruoping, Wright, Samuel D., Taggart, Andrew K.P., Waters, M. Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy exercise or oxygen deficit often links with higher levels of arterial lactate and lower levels of plasma free fatty acids (FFA). Treatment with lactate reduces circulating levels of FFA in vivo and lipolysis in adipose tissues in vitro. However, the underlying mechanism has remained unclear. Here we employ pharmacological and genetic approaches to show that GPR81, an orphan G-protein-coupled receptor with relatively restricted expression in the adipose tissues, functions as a receptor for lactate and can mediate an anti-lipolytic effect of lactate. GPR81 may thus function as a sensor of lactate that can modulate the FFA pool under exercise or conditions of oxygen deficit.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2008.10.088