Lipopolysaccharide inhibits virus-mediated induction of interferon genes by disruption of nuclear transport of interferon regulatory factors 3 and 7

We have studied the effects of lipopolysaccharide (LPS) on the Newcastle disease virus (NDV)-mediated induction of cytokine genes expression. Raw cells treated with LPS before or after virus infection showed down-regulation in the expression of interferon A and, to a lesser extent, interferon B gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1999-06, Vol.274 (25), p.18060-18066
Hauptverfasser: Juang, Y.T, Au, W.C, Lowther, W, Hiscott, J, Pitha, P.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have studied the effects of lipopolysaccharide (LPS) on the Newcastle disease virus (NDV)-mediated induction of cytokine genes expression. Raw cells treated with LPS before or after virus infection showed down-regulation in the expression of interferon A and, to a lesser extent, interferon B genes. In contrast, induction of the interleukin (IL)-6 gene was enhanced. The effects of LPS were not a result of the suppression of virus replication, because the transcription of viral nucleocapsid gene was not affected. Consistent with these findings, LPS also suppressed the NDV-mediated induction of chloramphenicol acetyltransferase reporter gene driven by murine interferon A4 promoter in a transient transfection assay. Furthermore, LPS inhibited virus-mediated phosphorylation of interferon regulatory factor (IRF)-3 and the consequent translocation of IRF-3 from cytoplasm to nucleus. The LPS-mediated inhibition of IFNA gene expression was much weaker in infected Raw cells that constitutively overexpressed IRF-3. The nuclear translocation of IRF-7 in infected cells was also inhibited by LPS. These data suggest that LPS down-regulates the virus-mediated induction of IFNA genes by post-translationally targeting the IRF-3 and IRF-7 proteins.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.25.18060