Single amino acid replacements in an antigenic peptide are sufficient to alter the TCR V beta repertoire of the responding CD8+ cytotoxic lymphocyte population
Cytotoxic CD8+ T lymphocytes are activated upon the engagement of their Ag-specific receptors by MHC class I molecules loaded with peptides 8-11 amino acids long. T cell responses triggered by certain antigenic peptides are restricted to a limited number of TCR V beta elements. The precise role of t...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1999-06, Vol.162 (12), p.7263-7270 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cytotoxic CD8+ T lymphocytes are activated upon the engagement of their Ag-specific receptors by MHC class I molecules loaded with peptides 8-11 amino acids long. T cell responses triggered by certain antigenic peptides are restricted to a limited number of TCR V beta elements. The precise role of the peptide in causing this restricted TCR V beta expansion in vivo remains unclear. To address this issue, we immunized C57BL/6 mice with the immunodominant peptide of the vesicular stomatitis virus (VSV) and several peptide variants carrying single substitutions at TCR-contact residues. We observed the expansion of a limited set of TCR V beta elements responding to each peptide variant. To focus our analysis solely on the TCR beta-chain, we created a transgenic mouse expressing exclusively the TCR alpha-chain from a VSV peptide-specific CD8+ T cell clone. These mice showed an even more restricted TCR V beta usage consequent to peptide immunization. However, in both C57BL/6 and TCR alpha transgenic mice, single amino acid replacements in TCR-contact residues of the VSV peptide could alter the TCR V beta usage of the responding CD8+ T lymphocytes. These results provide in vivo evidence for an interaction between the antigenic peptide and the germline-encoded complementarity-determining region-beta loops that can influence the selection of the responding TCR repertoire. Furthermore, only replacements at residues near the C terminus of the peptide were able to alter the TCR V beta usage, which is consistent with the notion that the TCR beta-chain interacts in vivo preferentially with this region of the MHC/peptide complex. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.162.12.7263 |