Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults

We have employed the proteomic approach in combination with mass spectrometry to study the immune response of honey bee workers at different developmental stages. Analysis of the hemolymph proteins of noninfected, mock-infected and immune-challenged individuals by polyacrylamide gel electrophoresis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of insect biochemistry and physiology 2008-12, Vol.69 (4), p.155-167
Hauptverfasser: Randolt, Klara, Gimple, Olaf, Geissendörfer, Jan, Reinders, Jörg, Prusko, Carsten, Mueller, Martin J, Albert, Stefan, Tautz, Jürgen, Beier, Hildburg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have employed the proteomic approach in combination with mass spectrometry to study the immune response of honey bee workers at different developmental stages. Analysis of the hemolymph proteins of noninfected, mock-infected and immune-challenged individuals by polyacrylamide gel electrophoresis showed differences in the protein profiles. We present evidence that in vitro reared honey bee larvae respond with a prominent humoral reaction to aseptic and septic injury as documented by the transient synthesis of the three antimicrobial peptides (AMPs) hymenoptaecin, defensin1, and abaecin. In contrast, young adult worker bees react with a broader spectrum of immune reactions that include the activation of prophenoloxidase and humoral immune responses. At least seven proteins appeared consistently in the hemolymph of immune-challenged bees, three of which are identical to the AMPs induced also in larvae. The other four, i.e., phenoloxidase (PO), peptidoglycan recognition protein-S2, carboxylesterase (CE), and an Apis-specific protein not assigned to any function (HP30), are induced specifically in adult bees and, with the exception of PO, are not expressed after aseptic injury. Structural features of CE and HP30, such as classical leucine zipper motifs, together with their strong simultaneous induction upon challenge with bacteria suggest an important role of the two novel bee-specific immune proteins in response to microbial infections. Arch. Insect Biochem. Physiol. 2008.
ISSN:0739-4462
1520-6327
DOI:10.1002/arch.20269