miR-302b maintains “stemness” of human embryonal carcinoma cells by post-transcriptional regulation of Cyclin D2 expression
Embryonic stem cells (ESCs) and embryonal carcinoma cells (ECCs) possess the remarkable property of self-renewal and differentiation potency. They are model preparations for investigating the underlying mechanisms of “stemness”. microRNAs are recently discovered small noncoding RNAs with a broad spe...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2008-12, Vol.377 (2), p.434-440 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Embryonic stem cells (ESCs) and embryonal carcinoma cells (ECCs) possess the remarkable property of self-renewal and differentiation potency. They are model preparations for investigating the underlying mechanisms of “stemness”. microRNAs are recently discovered small noncoding RNAs with a broad spectrum of functions, especially in control of development. Here, we show that miR-302b indirectly regulates expression of the pluripotent stem cell marker Oct4, and it directly regulates expression of Cyclin D2 protein, a developmental regulator during gastrulation. Using loss-of function and gain-of function approaches, we demonstrate that functional miR-302b is necessary to maintain stem cell self-renewal and inhibit neuronal differentiation of human ECCs. During retinoic acid-induced neuronal differentiation, Cyclin D2 protein but not mRNA expression is strongly increased, concurrent with the down-regulation of miR-302b and Oct4. Our results suggest that miR-302b plays an important role in maintaining the pluripotency of ECCs and probably ESCs, by post-transcriptional regulation of Cyclin D2 expression. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2008.09.159 |