Solution structure of an EGF module pair from the Plasmodium falciparum merozoite surface protein 1
The solution structure of the 96-residue C-terminal fragment of the merozoite surface protein 1 (MSP-1) from Plasmodium falciparum has been determined using nuclear magnetic resonance (NMR) spectroscopic measurements on uniformly13C/15N-labelled protein, efficiently expressed in the methylotrophic y...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1999-05, Vol.289 (1), p.113-122 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solution structure of the 96-residue C-terminal fragment of the merozoite surface protein 1 (MSP-1) from Plasmodium falciparum has been determined using nuclear magnetic resonance (NMR) spectroscopic measurements on uniformly13C/15N-labelled protein, efficiently expressed in the methylotrophic yeast Komagataella (Pichia) pastoris. The structure has two domains with epidermal growth factor (EGF)-like folds with a novel domain interface for the EGF domain pair interactions, formed from a cluster of hydrophobic residues. This gives the protein a U-shaped overall structure with the N-terminal proteolytic processing site close to the C-terminal glycosyl phosphatidyl inositol (GPI) membrane anchor site, which is consistent with the involvement of a membrane-bound proteinase in the processing of MSP-1 during erythrocyte invasion. This structure, which is the first protozoan EGF example to be determined, contrasts with the elongated structures seen for EGF-module pairs having shared Ca2+-ligation sites at their interface, as found, for example, in fibrillin-1. Recognition surfaces for antibodies that inhibit processing and invasion, and antibodies that block the binding of these inhibitory antibodies, have been mapped on the three-dimensional structure by considering specific MSP-1 mutants. |
---|---|
ISSN: | 0022-2836 |
DOI: | 10.1006/jmbi.1999.2753 |