Pharmacologic and Behavioral Responses of Inbred C57BL/6J and Strain 129/SvJ Mouse Lines

Gene-targeting technology is creating an explosion in the number of animals available with single gene mutations that affect the function of the central nervous system. Most gene-targeted mice are produced on a mixed genetic background of C57BL/6J and substrains of Strain 129. Understanding the beha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology, biochemistry and behavior biochemistry and behavior, 1999-05, Vol.63 (1), p.21-26
Hauptverfasser: Homanics, Gregg E, Quinlan, Joseph J, Firestone, Leonard L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gene-targeting technology is creating an explosion in the number of animals available with single gene mutations that affect the function of the central nervous system. Most gene-targeted mice are produced on a mixed genetic background of C57BL/6J and substrains of Strain 129. Understanding the behavioral characteristics and responses to various drugs of these parental strains is vital to interpreting data from gene-targeted mice. We directly compared C57BL/6J and Strain 129/SvJ mouse lines on several behavioral paradigms and in response to several hypnotic and anesthetic drugs. Compared to Strain 129/SvJ mice, C57BL/6J animals are more sensitive to the hypnotic effects of midazolam, zolpidem, and propofol, less sensitive to etomidate and ethanol, and do not differ in sensitivity to Ro15-4513 or pentobarbital. These strains do not differ in their sensitivity to the motor ataxic effects of the volatile anesthetics enflurane or halothane. However, Strain 129/SvJs are more sensitive to the immobilizing effects of halothane but not enflurane. Motor coordination differs initially, but with repeated testing strain differences are no longer apparent. Strain 129/SvJ mice are more anxious on the elevated plus maze and open-field activity assays. Thus, these mouse strains harbor polymorphisms that influence some, but not all, traits of interest to behavioral neuroscientists.
ISSN:0091-3057
1873-5177
DOI:10.1016/S0091-3057(98)00232-9