Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein IIb/IIIa-dependent mechanism
Platelets, on activation, release vesicular particles called platelet microparticles. Despite their procoagulant activity, their functional role in platelet-vessel wall interactions is not known. We examined the binding of microparticles to vessel wall components in vitro and in vivo. Microparticles...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 1999-05, Vol.99 (19), p.2577-2582 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Platelets, on activation, release vesicular particles called platelet microparticles. Despite their procoagulant activity, their functional role in platelet-vessel wall interactions is not known.
We examined the binding of microparticles to vessel wall components in vitro and in vivo. Microparticles bound to fibrinogen-, fibronectin-, and collagen-coated surfaces. Compared with activated platelets, we observed minimal binding of microparticles to vitronectin and von Willebrand factor. The glycoprotein IIb/IIIa (GP IIb/IIIa) inhibitors abciximab and eptifibatide (Integrilin) inhibited the binding to fibrinogen and fibronectin but had minimal effect on binding to collagen. Furthermore, monoclonal antibodies to GP Ib or anionic phospholipid-binding proteins (beta2-glycoprotein I or annexin V) had no effect in these interactions. Microparticles did not bind to monolayers of resting or stimulated human umbilical vein endothelial cells (HUVECs), even in the presence of fibrinogen or von Willebrand factor. However, under similar conditions, microparticles bound to extracellular matrix produced by cultured HUVECs. Abciximab inhibited this interaction by approximately 50%. In a rabbit model of arterial endothelial injury, the infusion of 51Cr-labeled microparticles resulted in a 3- to 5-fold increase of microparticle adhesion to the injured site compared with the uninjured site (P |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/01.CIR.99.19.2577 |