Reverse transcription of the yeast Ty1 retrotransposon: the mode of first strand transfer is either intermolecular or intramolecular
Replication of the yeast Ty1 retrotransposon occurs by a mechanism similar to that of retroviruses. According to the current model of retroviral reverse transcription, two strand transfers (the so-called minus-strand and plus-strand strong-stop DNA transfers) are required to produce full-length prei...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1999-05, Vol.288 (4), p.505-510 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Replication of the yeast Ty1 retrotransposon occurs by a mechanism similar to that of retroviruses. According to the current model of retroviral reverse transcription, two strand transfers (the so-called minus-strand and plus-strand strong-stop DNA transfers) are required to produce full-length preintegrative DNA. Because two genomic RNA molecules are packaged inside the viral particles, the strand transfers can be either intra- or intermolecular. To study the mode of transfer of minus-strand strong-stop DNA during reverse transcription of the yeast Ty1 retrotransposon, we have analyzed the cDNA products that accumulate in the cytoplasmic virus-like particles of yeast cells harboring two marked Ty1 elements. Our results indicate that Ty1 minus-strand transfer occurs in a random manner with approximately similar frequencies of intra- and intermolecular transfer. It has been observed recently that intra- and intermolecular minus-strand transfer occur at similar frequencies during replication of a complex retrovirus such as HIV-1. These results together with the observation that genetic recombination occurs with a high frequency during minus-strand synthesis suggest that both packaged RNA molecules are needed for the synthesis of one minus-strand DNA. |
---|---|
ISSN: | 0022-2836 |
DOI: | 10.1006/jmbi.1999.2723 |