Reverse transcription of the yeast Ty1 retrotransposon: the mode of first strand transfer is either intermolecular or intramolecular

Replication of the yeast Ty1 retrotransposon occurs by a mechanism similar to that of retroviruses. According to the current model of retroviral reverse transcription, two strand transfers (the so-called minus-strand and plus-strand strong-stop DNA transfers) are required to produce full-length prei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1999-05, Vol.288 (4), p.505-510
Hauptverfasser: Wilhelm, M, Boutabout, M, Heyman, T, Wilhelm, F X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Replication of the yeast Ty1 retrotransposon occurs by a mechanism similar to that of retroviruses. According to the current model of retroviral reverse transcription, two strand transfers (the so-called minus-strand and plus-strand strong-stop DNA transfers) are required to produce full-length preintegrative DNA. Because two genomic RNA molecules are packaged inside the viral particles, the strand transfers can be either intra- or intermolecular. To study the mode of transfer of minus-strand strong-stop DNA during reverse transcription of the yeast Ty1 retrotransposon, we have analyzed the cDNA products that accumulate in the cytoplasmic virus-like particles of yeast cells harboring two marked Ty1 elements. Our results indicate that Ty1 minus-strand transfer occurs in a random manner with approximately similar frequencies of intra- and intermolecular transfer. It has been observed recently that intra- and intermolecular minus-strand transfer occur at similar frequencies during replication of a complex retrovirus such as HIV-1. These results together with the observation that genetic recombination occurs with a high frequency during minus-strand synthesis suggest that both packaged RNA molecules are needed for the synthesis of one minus-strand DNA.
ISSN:0022-2836
DOI:10.1006/jmbi.1999.2723