Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations

Biofilm accumulation in nanofiltration and reverse osmosis membrane elements results in a relative increase of normalised pressure drop (ΔNPD). However, an increase in ΔNPD is not exclusively linked to biofouling. In order to quantify biofouling, the biomass parameters adenosine triphosphate (ATP),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2008-12, Vol.42 (19), p.4856-4868
Hauptverfasser: Vrouwenvelder, J.S., Manolarakis, S.A., van der Hoek, J.P., van Paassen, J.A.M., van der Meer, W.G.J., van Agtmaal, J.M.C., Prummel, H.D.M., Kruithof, J.C., van Loosdrecht, M.C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biofilm accumulation in nanofiltration and reverse osmosis membrane elements results in a relative increase of normalised pressure drop (ΔNPD). However, an increase in ΔNPD is not exclusively linked to biofouling. In order to quantify biofouling, the biomass parameters adenosine triphosphate (ATP), total cell count and heterotrophic plate count in membrane elements were investigated during membrane autopsies and compared with ΔNPD in test rigs and 15 full scale investigations with different types of feed water. The combination of biomass related parameters ATP and total cell count in membrane elements seem to be suitable parameters for diagnosis of biofouling, whereas plate counts were not appropriate to assess biofouling. The applied ΔNPD measurement was too insensitive for early detection of fouling. Measurements of biological parameters in the water were shown to be not appropriate in quantifying biofouling. Evidently, there is a need for a practical tool, sensitive pressure drop data and systematic research.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2008.09.002