Cloning and Characterization of the 5′ Flanking Region of the Human Uncoupling Protein 3 (UCP3) Gene

Uncoupling protein 3 (UCP3), a member of the UCP family, mainly expressed in skeletal muscle could be responsible for thermogenesis in humans. Since little is known about its regulation, we studied the 5′ flanking region of the human UCP3 (hUCP3) gene, which potentially contains the promoter sequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 1999-05, Vol.258 (2), p.278-283
Hauptverfasser: Acı́n, Alberto, Rodriguez, Marianne, Rique, Hervé, Canet, Emmanuel, Boutin, Jean A., Galizzi, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uncoupling protein 3 (UCP3), a member of the UCP family, mainly expressed in skeletal muscle could be responsible for thermogenesis in humans. Since little is known about its regulation, we studied the 5′ flanking region of the human UCP3 (hUCP3) gene, which potentially contains the promoter sequences. We report the hUCP3 transcription initiation on a G located 764 nucleotides upstream the A contained in the first translated codon. Therefore, hUCP3 first exon has 669 bases of untranslated sequence. We also report the cloning and sequencing of seven kilobases from the gene 5′ end and analyze the features of the potential proximal promoter. The MyoD family binding motif, called E-box, is the most abundant on this region. Other muscle-specific motives present in the potential proximal promoter include a MEF2 site as well as binding sequences for ubiquitous factors such as GC box and two CAAT boxes. Additionally, three putative peroxisome proliferator and one thyroid hormone response elements (PPRE and TRE, respectively) are found, which suggest a potential role for the peroxisome proliferator-activated receptor (PPAR) and thyroid hormone in human UCP3 gene expression. The description of the promoter region of the UCP3 gene will facilitate the elucidation of its transcriptional control.
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.1999.0530