A combination of Lox-1 and Nox1 regulates TLR9-mediated foam cell formation

The formation of foam cells is the hallmark of early atherosclerotic lesions, and the uptake of modified low-density lipoprotein (LDL) by macrophage scavenger receptors is thought to be a key process in their formation. In this study, we examined the role of lectin-like oxLDL receptor-1 (Lox-1) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular signalling 2008-12, Vol.20 (12), p.2266-2275
Hauptverfasser: Lee, Jin-Gu, Lim, Eun-Jung, Park, Dae-Weon, Lee, Sun-Hye, Kim, Jae-Ryong, Baek, Suk-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formation of foam cells is the hallmark of early atherosclerotic lesions, and the uptake of modified low-density lipoprotein (LDL) by macrophage scavenger receptors is thought to be a key process in their formation. In this study, we examined the role of lectin-like oxLDL receptor-1 (Lox-1) and NADPH oxidase 1 (Nox1) in toll-like receptor 9 (TLR9)-mediated foam cell formation. TLR9 activation of Raw264.7 cells or mouse primary peritoneal macrophages by CpG ODN treatment enhanced Lox-1 gene and protein expression. In addition, CpG ODN-induced Nox1 mRNA expression, which in turn increased foam cell formation. The inhibition of CpG ODN-induced reactive oxygen species (ROS) generation by treatment with antioxidants, as well as with knockdown of Nox1 using siRNA, suppressed the formation of foam cells. The induction of Lox-1 and Nox1 by CpG ODN was regulated via the TLR9-p38 MAPK signaling pathway. CpG ODN also increased NFκB activity, and a potent inhibitor of NFκB that significantly blocked CpG-induced Nox1 expression, suggesting that Nox1 regulation is mediated through an NFκB-dependent mechanism. Taken together, these results suggest that a combination of Lox-1 and Nox1 plays a key role in the TLR9-mediated formation of foam cells via the p38 MAPK pathway.
ISSN:0898-6568
1873-3913
DOI:10.1016/j.cellsig.2008.08.022