Identification of candidate regulators of multipotency in human skeletal progenitor cells

Stem cell differentiation is controlled intrinsically by dynamic networks of interacting lineage-specifying and multipotency genes. However, the relationship between internal genetic dynamics and extrinsic regulation of internal dynamics is complex and, in the case of skeletal progenitor cell differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2008-12, Vol.377 (1), p.68-72
Hauptverfasser: MacArthur, Ben D., Tare, Rahul S., Murawski, Kate, Oreffo, Richard O.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stem cell differentiation is controlled intrinsically by dynamic networks of interacting lineage-specifying and multipotency genes. However, the relationship between internal genetic dynamics and extrinsic regulation of internal dynamics is complex and, in the case of skeletal progenitor cell differentiation, incompletely understood. In this study we elucidate a set of candidate markers of multipotency in human skeletal progenitor cells by systematic study of the relationships between gene expression and environmental stimulus. We used full genome cDNA microarrays to explore gene expression profiles in skeletal progenitor enriched populations derived from adult human bone marrow, minimally cultured in basal, osteogenic, chondrogenic, and adipogenic lineage-specifying culture conditions. We then used a variety of statistical clustering procedures to identify a small subset of genes which are related to these stromal lineages but are specific to none. For a selection of 11 key genes, conclusions of the microarray study were confirmed using quantitative real-time PCR.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2008.09.084