Allee Effect and Self-Fertilization in Hermaphrodites: Reproductive Assurance in a Structured Metapopulation

Reproductive assurance through selfing during colonization events or when population densities are low has often been put forward as a mechanism selecting for the evolution of self-fertilization. Such arguments emphasize on the role of both local demography and metapopulation processes. We developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2008-10, Vol.62 (10), p.2558-2569
Hauptverfasser: Dornier, Antoine, Munoz, François, Cheptou, Pierre-Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reproductive assurance through selfing during colonization events or when population densities are low has often been put forward as a mechanism selecting for the evolution of self-fertilization. Such arguments emphasize on the role of both local demography and metapopulation processes. We developed a model for the evolution of self-fertilization in a structured metapopulation in which local densities are not steady because of population growth. Reproduction by selfing is density-independent (reproductive assurance) but selfed seeds endure inbreeding depression, whereas reproduction by outcrossing is density-dependent (Allee effect). First, we derived an analytical criterion for metapopulation viability as a function of the selfing rate and metapopulation parameters. We show that outcrossers can develop a viable metapopulation when they produce a high amount of dispersal seeds that counterbalances their incapacity to found new populations from low densities. Second, the model shows there is a positive feedback between demography and outcrossing rates, leading to either complete outcrossing or selfing. Specifically, we illustrate that inbreeding depression can paradoxically favor the evolution of selfing because of its negative effect on density. Also, complete outcrossing can be selected despite pollen limitation, although it does not provide a full seed set. This model underlines the influence of the mating system both on demography and gene dynamics in a metapopulation context.
ISSN:0014-3820
1558-5646
DOI:10.1111/j.1558-5646.2008.00464.x