Extracellular Regulation of Interleukin (IL)-1beta through Lung Epithelial Cells and Defective IL-1 Type II Receptor Expression
Interleukin (IL)-1beta is produced primarily by activated mononuclear phagocytic cells in the lung airway and functions as a potent proinflammatory cytokine. Release of IL-1beta in the airway microenvironment induces the production of proinflammatory factors from parenchymal airway cells, including...
Gespeichert in:
Veröffentlicht in: | American journal of respiratory cell and molecular biology 1999-05, Vol.20 (5), p.964-975 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interleukin (IL)-1beta is produced primarily by activated mononuclear phagocytic cells in the lung airway and functions as a potent proinflammatory cytokine. Release of IL-1beta in the airway microenvironment induces the production of proinflammatory factors from parenchymal airway cells, including IL-8. To study the regulation of lung epithelial cell responsiveness to IL-1beta, the human type II-like airway epithelial cell line A549 and primary normal human bronchial epithelial (NHBE) cells were assayed for IL-1-specific response modifiers. Specifically, the IL-1 type I receptor (IL-1RI), IL-1 type II receptor (IL-1RII), IL-1 receptor accessory protein (IL-1RAcP), and IL-1 receptor antagonist (IL-1Ra) were analyzed. Constitutive expression of IL-1RI, IL-1RAcP, and IL-1Ra was detected in both immortalized and primary human airway epithelial cells. Interestingly, a complete absence of IL-1RII expression was demonstrated under all study conditions in both A549 and NHBE cells. Both cell types were responsive to IL-1beta at concentrations as low as 50 to 500 pg/ml when measured by IL-8 release into cell supernatants. IL-1beta-induced chemokine production and release were inhibited by a 10- to 1,000-fold molar excess of recombinant IL-1RII or IL-1Ra, whereas IL-1RI was a less effective inhibitor. On the basis of our results, we propose that human lung epithelial cells lack the ability to downregulate IL-1beta activity extracellularly because of an inability to express IL-1RII. Release of extracellular IL-1 inhibitors, including soluble IL-1Ra and soluble IL-1RII, by other inflammatory cells present in the airway may be critical for regulation of IL-1beta activity in the airway microenvironment. |
---|---|
ISSN: | 1044-1549 1535-4989 |