Perforin-Independent CD8+ T-Cell-Mediated Cytotoxicity of Alveolar Epithelial Cells Is Preferentially Mediated by Tumor Necrosis Factor-alpha . Relative Insensitivity to Fas Ligand

CD8(+) T cells appear to play an important pathophysiologic role in many inflammatory lung diseases. The primary effector function of this T-cell subset is cytolysis of virus-infected cells, and it is widely believed that there are two primary molecular mechanisms by which this occurs: the perforin/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory cell and molecular biology 1999-05, Vol.20 (5), p.849-858
Hauptverfasser: Liu, Angela Ning, Mohammed, Ashraf Z, Rice, Ward R, Fiedeldey, Dana T, Liebermann, Jennifer S, Whitsett, Jeffrey A, Braciale, Thomas J, Enelow, Richard I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CD8(+) T cells appear to play an important pathophysiologic role in many inflammatory lung diseases. The primary effector function of this T-cell subset is cytolysis of virus-infected cells, and it is widely believed that there are two primary molecular mechanisms by which this occurs: the perforin/granzyme-mediated pathway of cytolysis, and the Fas ligand (FasL)-Fas (CD95/APO-1) pathway of induction of target-cell apoptosis. This conclusion is based primarily on data obtained with hematopoetic cell lines as target cells. There is also a growing body of evidence that Fas is involved in the transduction of apoptotic signals in a variety of inflammatory disease states, particularly involving the liver and the lung. In the study reported here we took advantage of a novel in vitro assay to directly assess the effector mechanisms employed in CD8(+) T-cell-mediated cytolysis of alveolar epithelial cells. We present evidence that FasL-induced, Fas-mediated apoptosis does not directly contribute to T-cell-mediated cytolysis of alveolar epithelial-derived cells, even though Fas is expressed and functional on these cells. We also demonstrated that the perforin-independent cytolytic activity of CD8(+) T cells against alveolar epithelial-derived cells is explained entirely by tumor necrosis factor-alpha (TNF-alpha), which is expressed on CD8(+) T cells. Furthermore, we show that bystander cytolysis of alveolar epithelial-derived cells by antiviral CD8(+) T cells is entirely perforin-independent. This activity is mediated exclusively by TNF-alpha. Both alveolar epithelial-derived cells and primary murine type II cells show susceptibility to apoptosis triggered by soluble TNF-alpha, without the need for transcriptional or translational inhibition. We also confirmed the resistance of alveolar type II cells to FasL in vivo by performing adoptive transfer of perforin-deficient antiviral CD8(+) T cells into transgenic mice expressing a target antigen in type II epithelial cells. Significant lung injury developed in the transgenic CD8(+) T-cell recipients, whether or not Fas was expressed in these animals. Furthermore, preincubation of the T cells with antibody to TNF-alpha completely abolished the injury. These results suggest that alveolar epithelial cells are relatively sensitive to T cell-triggered, TNF-alpha-mediated apoptosis, and resistant to apoptosis triggered by FasL. These observations may have important ramifications for understanding of the pathophysiology of in
ISSN:1044-1549
1535-4989
DOI:10.1165/ajrcmb.20.5.3585