Mechanism of IL-1 induced inhibition of protein synthesis in skeletal muscle

Chronic interleukin (IL)-1 administration is associated with negative nitrogen balance and the loss of lean body mass. To elucidate the molecular mechanism(s) by which IL-1 modulates protein metabolism in muscle, we investigated the effects of chronic (6 day) IL-1alpha infusion on protein synthesis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock (Augusta, Ga.) Ga.), 1999-04, Vol.11 (4), p.235-241
Hauptverfasser: COONEY, R. N, MAISH, G. O, GILPIN, T, SHUMATE, M. L, LANG, C. H, VARY, T. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic interleukin (IL)-1 administration is associated with negative nitrogen balance and the loss of lean body mass. To elucidate the molecular mechanism(s) by which IL-1 modulates protein metabolism in muscle, we investigated the effects of chronic (6 day) IL-1alpha infusion on protein synthesis in Individual muscles (gastrocnemius, soleus, heart) compared with saline-infused control rats. IL-1 significantly decreased muscle weight, protein content, and the rate of protein synthesis in gastrocnemius (fast-twitch muscle). IL-1 had no effect on these parameters in the heart, whereas only the rate of protein synthesis was reduced in soleus (slow-twitch muscle). The reduction in gastrocnemius protein synthesis was not the result of a decrease in total RNA content, but was associated with a diminished translational efficiency. The diminished translational efficiency correlated with a 40% reduction in the epsilon-subunit of eukaryotic initiation factor 2B (elF2Bepsilon) in gastrocnemius from IL-1 -treated animals. However, the content of the alpha-subunit of elF2 (elF2alpha) was unaffected. In contrast, the elF2alpha content in heart was increased by IL-1, although elF2Bepsilon levels were unchanged. Reductions in skeletal muscle protein synthesis were not associated with a concomitant reduction in circulating or tissue content of insulin-like growth factor I. In summary, the IL-1-induced decrease in gastrocnemius protein synthesis appears to be regulated at the level of RNA translation via a reduction in elF2Bepsilon. These findings support a regulatory role for IL-1 as a mediator of muscle protein synthesis and the alterations in body composition observed in catabolic states where this cytokine is overexpressed.
ISSN:1073-2322
1540-0514
DOI:10.1097/00024382-199904000-00002