Effects of supplemental safflower and vitamin E during late gestation on lamb growth, serum metabolites, and thermogenesis

Twin-bearing Targhee ewes (Exp. 1, 1 yr, n = 42) and 1,182 single- and twin-bearing whiteface range ewes (Exp. 2, n = 8 experimental units over 2 yr) were used in a 2 x 2 factorial arrangement of treatments to determine the effect of supplemental energy source and level of vitamin E supplement on la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2008-11, Vol.86 (11), p.3194-3202
Hauptverfasser: Dafoe, J.M, Kott, R.W, Sowell, B.F, Berardinelli, J.G, Davis, K.C, Hatfield, P.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twin-bearing Targhee ewes (Exp. 1, 1 yr, n = 42) and 1,182 single- and twin-bearing whiteface range ewes (Exp. 2, n = 8 experimental units over 2 yr) were used in a 2 x 2 factorial arrangement of treatments to determine the effect of supplemental energy source and level of vitamin E supplement on lamb serum metabolites and thermogenesis (Exp. 1) and on lamb growth (Exp. 2). During late gestation, ewes were individually fed (Exp. 1) or group-fed (Exp. 2) a daily supplement. Supplements were 226 g/ewe of daily safflower seed (DM basis; SS) with either 350 IU/ewe daily (VE) or no added supplemental (VC) vitamin E; or 340 g/ewe daily of a barley-based grain supplement (DM basis; GC) and either VE or VC. One hour postpartum in Exp. 1, twin-born lambs were placed in a 0°C dry cold chamber for 30 min. Lamb rectal temperature was recorded every 60 s and blood samples were taken immediately before and after cold exposure. In Exp. 2, lambs were weighed at birth, at turnout from confinement to spring range (32 d of age ± 7; turnout), and at weaning (120 d of age ± 7). Ewes were weighed at turnout and weaning. In Exp. 1, a level of vitamin E x energy source interaction was detected (P < 0.10) for body temperature and change in NEFA and glucose concentrations. Lambs from SSVC ewes had the lowest (P = 0.01) body temperature and had decreased (P = 0.08) NEFA concentration. The SS lambs tended to have decreased (P < 0.11) concentrations of blood urea N (BUN) and thyroxine at 0 min than did lambs born to GC ewes. After 30 min of cold exposure, SS lambs had increased and GC lambs had decreased BUN, triiodothyronine, and triiodothyronine:thyroxine concentrations (P < 0.10). In Exp. 2, kilograms of lamb per ewe at turnout and weaning and lamb survival at weaning were greater (P < 0.07) for GC than SS lambs. Based on the decreased body temperature in SSVC lambs at birth, the greater change in BUN during the cold exposure for SS than GC lambs, and the decreased survival rate for SS than GC lambs, SSVC-supplemented ewes appeared to give birth to lambs with an apparently decreased energetic capacity. This may compromise the ability of the newborn lamb to adapt to extreme environmental conditions.
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2007-0633